Decomposition of perfluoro-(2,4,4,7,7,9-hexamethyl-3,8dioxa-2,5,6,9-tetra-azadec-5-ene) in the presence of fluoroalkenes, ethyne, benzene and nitroso compounds

Raymond Fisher and Anthony E. Tipping*

Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 1QD (UK)

(Received June 17, 1991; accepted September 3, 1991)

Abstract

Thermolysis of the azo compound $(CF_3)_2NOC(CF_3)_2N=NC(CF_3)_2ON(CF_3)_2$ (1) alone at 140 °C gives nitrogen, hexafluoroacetone and the hydrazine $(CF_3)_2NN(CF_3)_2$ via $(CF_3)_2N$ ·radical coupling in quantitative yield, while from decomposition in the presence of the alkenes $CF_2=CCl_2$, $CF_2=CFCl$ and $CF_2=CHF$ (*ca.* 1:1 molar ratio) the major products are the dimer $[(CF_3)_2NCF_2CCl_2]_2$, trimer $(CF_3)_2N(CF_2CFCl)_2CFClCF_2N(CF_3)_2$ and a mixture of tetramers $(CF_3)_2N(C_2HF_3)_4N(CF_3)_2$, respectively. The $(CF_3)_2N \cdot \text{radicals generated from 1 can also be trapped with bromine [<math>\rightarrow (CF_3)_2NBr$] and nitroso compounds [$\rightarrow (CF_3)_2NNRO \cdot (R=CF_3 \text{ and } Ph)$], but with ethyne or benzene near-quantitative yields of the amine $(CF_3)_2NH$ are obtained.

Introduction

The $(CF_3)_2N \cdot \text{radical}$ has been generated from precursors of the type $(CF_3)_2NX$ where X = Cl, Br or I [1], $X = OCF_3$ [2], $X = ON(CF_3)_2$ [3] and $X = HgN(CF_3)_2$ [4]. Only in the latter case was the radical produced in the absence of other radicals, but the mercurial decomposition was slow.

The azo compound 1 [5] was considered to be a further possible precursor of the $(CF_3)_2N$ radical and the results of a preliminary investigation carried out in 1980–81 [6] into the decomposition of 1 both alone and in the presence of compounds containing multiple bonds are now reported.

Experimental

Starting material

Perfluoro-(2,4,4,7,7,9-hexamethyl-3,8-dioxa-2,5,6,9-tetra-azadec-5-ene) (1) was prepared in quantitative yield by reaction of N,Nbis(trifluoromethyl)amino-oxyl with hexafluoroacetone azine (2:1 molar ratio) in vacuo at 25 °C (3 d) [5].

^{*}To whom enquiries should be addressed.

Reactants and products were manipulated, where possible, in a conventional vacuum system to avoid contamination with air or moisture.

Reactions were carried out *in vacuo* in sealed Pyrex tubes (*ca.* 300 cm³), unless stated otherwise, and volatile products were separated by fractional condensation *in vacuo* followed by distillation (20 cm, Vigreux column) where necessary. Products were examined by molecular weight determination (Regnault's method), IR spectroscopy (Perkin–Elmer 257 spectrometer), ¹⁹F NMR spectroscopy (Perkin–Elmer R10 or Varian HA100 spectrometers operating at 56.46 and 94.1 MHz, respectively, reference external CF₃CO₂H; chemical shifts to low field of reference are designated positive), mass spectrometry (A.E.I. MS 902 instrument) and GLC [6 m methyl silicone (OV 1) gum or 3 m silicone SE30 oil (30%) on Celite]. Boiling points were determined by Siwoloboff's method.

Thermal gravimetric analysis (TGA) was carried out on DuPont 950 and 900 thermal analysers in series and ESR experiments employed a Varian E9 spectrometer in the dual cavity mode ('strong pitch' as reference) with a mercury vapour lamp (1 kW) behind a quartz window used to irradiate the samples.

Reactions of the azo compound 1

(a) Pyrolysis alone

Compound 1 (3.50 g, 5.30 mmol), heated at 140 °C (1 d), gave (i) nitrogen (0.15 g, 5.30 mmol, 100%; mol. wt., 28), (ii) a -196 °C fraction identified as hexafluoroacetone (1.75 g, 10.54 mmol, 100%) by comparison of its IR and ¹⁹F NMR spectra with those of an authentic sample and (iii) a -95 °C fraction identified as tetrakis(trifluoromethyl)hydrazine (2) (1.60 g, 5.30 mmol, 100%) by comparison of its IR and ¹⁹F NMR spectra with those of an authentic sample.

(b) With 1,1-dichorodifluoroethylene

A mixture of the alkene (1.40 g, 10.5 mmol) and compound **1** (6.73 g, 10.1 mmol), heated at 140 °C (1 d), gave (i) nitrogen (0.28 g, 10.0 mmol, 99.5%; mol. wt., 28), (ii) hexafluoroacetone (3.30 g, 19.8 mmol, 98%), which condensed at -196 °C, (iii) unchanged alkene (0.04 g, 0.30 mmol, 3% recovered) (-120 °C fraction), (iv) a -95 °C fraction (1.79 g), which was shown to consist of hydrazine **2** (1.60 g, 4.80 mmol, 47%) contaminated with two minor unidentified components (*ca.* 0.19 g) by GLC (OV 1 at 30 °C) and (v) a -23 °C fraction identified as perfluoro(2,7-dimethyl-4,4,5,5-tetrachloro-2,7-diazaoctane) (**3**) (nc) [2.70 g, 4.70 mmol, 47% based on **1** 90% based on alkene] (Found: C, 17.2; Cl, 24.7; N, 5.0; F, 53.0%. C₈Cl₄F₁₆N₂ requires C, 16.9; Cl, 24.9; N, 4.9; F, 53.3%), b.p., 145–147 °C. ¹⁹F NMR: $\delta + 24.5$ [t, 2(CF₃)₂N, J = 19 Hz] and + 2.5 (broad s, 2CF₂) ppm. Mass spectrum m/z: 502/500/498 [9.1%, (M-Cl₂)⁺], 350/348/346 (16.1%, C₆F₁₀NCl₂⁺), 288/286/284 [3.9%, (CF₃)₂NCF₂CCl₂⁺], 262/260/258 (20.7%,

 $C_7F_4N_2Cl_2^+$), 202 [41.4%, (CF₃)₂NCF₂⁺], 114 (39.4%, $C_2F_4N^+$) and 69 (100%, CF₃⁺).

(c) With chlorotrifluoroethylene (1:1 molar ratio)

A mixture of 1 (6.59 g, 9.90 mmol) and the alkene (1.18 g, 10.1 mmol), heated at 140 °C (1 d), gave (i) nitrogen (0.27 g, 9.65 mmol, 97.5%; mol. wt., 28), (ii) hexafluoroacetone (3.22 g, 19.4 mmol, 98%) ($-196 \degree C$ fraction), (iii) unchanged alkene (0.05 g, 0.42 mmol, 4% recovered) (-120 °C fraction), (iv) a -78 °C fraction (2.19 g), shown by GLC (OV 1 at 30 °C) to consist mainly of hydrazine 2 (1.98 g, 6.5 mmol, 65.5%) contaminated with small amounts of three higher-boiling compounds, and (v) a -23 °C fraction identified as perfluoro-(2.9-dimethyl-4,5,7-trichloro-2,9-diazadecane) (4) (nc) [2.03 g. 3.10 mmol. 31% based on 1, 92% based on alkene] (Found: C, 18.4; Cl, 16.6; N, 4.3; F, 60.6%. C₁₀Cl₃F₂₁N₂ requires C, 18.4; Cl, 16.3; N, 4.3; F, 61.0%), b.p., 152–154 °C. ¹⁹F NMR: δ +24.9 [two overlapping multiplets, 12F, $2(CF_3)_2N$ and +9 to -10 (many complex bands, 9F, $3CF_2$ and 3CFCl) ppm. Mass spectrum m/z: 617 [trace, $(M-Cl)^+$], 500 {0.2% $[M - (CF_3)_2N]^+$, 300/298/296 (15.8%, $CF_2 = NC_4F_6Cl_2^+$), 270/268 [6.4%, $(CF_3)_2NCF_2CFCl^+$] 202 [92.2%, $(CF_3)_2NCF_2^+$], 114 (59.7%, $C_2F_4N^+$) and 69 (100%, CF_3^+); GLC (OV 1 at 30 °C), showed only one peak.

(d) With chlorotrifluoroethylene (2:1 molar ratio)

A mixture of 1 (6.60 g, 9.91 mmol) and the alkene (0.62 g, 5.3 mmol), heated at 160 °C (1 d), gave, (i) nitrogen (0.27 g, 9.65 mmol, 97.5%; mol. wt., 28), (ii) hexafluoroacetone (3.24 g, 19.5 mmol, 99%) which condensed at -196 °C and (iii) a -78 °C fraction (3.65 g) which was distilled to give hydrazine 2 (2.28 g, 7.50 mmol, 75%), b.p., 32 °C, lit. [7] b.p., 31 °C, and a colourless higher-boiling liquid (1.37 g), b.p., 62–154 °C. ¹⁹F NMR: δ +24.0 to +25.0 [complex, $(CF_3)_2N$] and +9.5 to -11.0 (complex multiplets, CF_2 and CFC) ppm. Examination of the liquid by coupled GLC (OV 1 at 70 °C) and mass spectrometry showed the presence of perfluoro-(2,5-dimethyl-3-chloro-2,5-diazahexane) (6) [ca. 0.22 g, 0.52 mmol, 5% based on 1, 10% based on alkene]. Mass spectrum m/z: 385 [1.3%, (M-Cl)⁺], 316 (1.2%, $C_5F_{12}N_2^+$), 270/268 [3.4%, (M - C_2F_6Cl)⁺], 220/218 [3.4%, (CF₃)₂NCFCl⁺], 202 [14.3%, (CF₃)₂NCF₂⁺], 114 (30.3%, $C_2F_4N^+$) and 69 (100%, CF_3^+), the two diastereoisomers (ca. 1:1 ratio) of perfluoro-(2,7-dimethyl-4,5-dichloro-2,7-diazaoctane) (5) [ca. 0.60 g, 1.12 mmol, 11% based on 1, 41% based on alkene]. Mass spectrum m/z (in order of retention time): 501 [0.1% $(0.1\%), (M-Cl)^+], 466 [0.5\% (0.3\%), (M-Cl_2)^+], 385 [3.1\% (2.0\%),$ $C_{6}F_{15}N_{2}^{+}$], 297 [7.2% (6.4%), $C_{5}F_{11}N_{2}^{+}$], 202 [26.8% (18.7%), (CF₃)₂NCF₂⁺], 137/135 [25.8% (18.8%), $C_2F_4Cl^+/C_4F_2NCl^+$], 114 [36.9% (29.0%), $C_2F_4N^+$] and 69 [100% (100%), CF_{3}^{+}), and trimer 4 [ca. 0.57 g, 0.87 mmol, 9% based on 1, 49% based on alkene].

(e) With chlorotrifluoroethylene (polymerisation experiment)

A mixture of 1 (0.025 g, 3.7×10^{-2} mmol), the alkene (7.5 g, 56.5 mmol) and solvent 1,1,2-trichlorotrifluoroethane (ca. 50 cm³), sealed in

vacuo in a spherical glass vessel equipped with a cold finger (*ca.* 70 cm³) and kept on a laboratory bench (28 d) gave a dense white precipitate identified as poly(chlorotrifluoroethylene) (5.40 g, 72%) [Found: C, 20.3; Cl, 30.1; F, 48.5%. Calc. for $(C_2F_3Cl)_n$: C, 20.6; Cl, 30.5; F, 48.9%]. TGA (total weight loss between 395 and 450 °C), m.p., 216 °C, glass transition temp., -4 °C.

Two control experiments, one utilising the same quantities of reactants but carried out in the dark, and the other with compound 1 absent, gave no polymer.

(f) With trifluorethylene

A mixture of 1 (3.25 g, 4.90 mmol) and the alkene (0.40 g, 4.90 mmol), heated at 140 °C (1 d) gave (i) nitrogen (0.13 g, 4.64 mmol, 94.5%; mol. wt., 28), (ii) hexafluoroacetone (1.58 g, 9.5 mmol, 97%) (-196 °C fraction), (iii) a -78 °C fraction (1.28 g) shown by GLC (OV 1 at 30 °C) to consist of hydrazine 2 (ca. 1.21 g, 3.97 mmol, 81%) contaminated with minor amounts of components with longer retention times, (iv) a -23 °C fraction identified as mixture of isomers a of the 2,11-diazadodecane $(CF_3)_2N[C_2HF_3]_4N(CF_3)_2$ (7) (nc) [0.40 g, 0.65 mmol, 13.5% based on 1, 54% based on alkene] (Found: C, 20.8; H, 0.6; N, 4.8; F, 72.1%. Calc. for C₁₂H₄F₂₄N₂: C, 20.5; H, 0.5; N, 4.4; F, 72.1%), b.p., 160–170 °C. ¹H NMR: δ broad bands in range 4.5 to 5.7 ppm. ¹⁹F NMR: δ + 24.5 [t, (CF₃)₂NCF₂, J=8 Hz] and +20.8 [mult., (CF₃)₂NCHF] ppm in the ratio 1:4 and complex multiplets in the range -8 to +3.5 (CF₂) and -48 to -65 (CHF) ppm. Mass spectrum m/z: 480 {0.6%, [M-(CF₃)₂N]⁺}, 449 (3.7%, C₉H₄F₁₇N⁺), 316 (4.7%, $C_6H_2F_{12}N^+$), 228 (16.2%, $C_5H_2F_8N^+$), 202 [13.9%, (CF_3)₂NCF₂⁺], 184 [63.6%, (CF₃)₂NCHF⁺], 114 (16.8%, C₂F₄N⁺), 96 (41.1%, C₂HF₃N⁺) and 69 (100%, CF_3^+), and (v) a waxy oil (0.18 g) which remained in the tube, mass spectrum m/z: 705 (1.2%, C₁₆H₅F₂₆N⁺), 592 (2.0%, C₁₃H₄F₂₂N⁺), 417 (2.5%, $C_8H_3F_{16}N^+$), 234 (5.7%, $C_4HF_9N^+$), 228 (5.0%, $C_5H_2F_8N^+$), 202 $(22.0\%, (CF_3)_2NCF_2^+]$, 184 [94.1%, $(CF_3)_2NCHF^+$], 146 (9.4%, $C_3HF_5N^+$), 114 (17.3%, $C_2F_4N^+$), 96 (43.4%, $C_2HF_3N^+$) and 69 (100%, CF_3^+).

(g) With ethyne

A mixture of 1 (3.30 g, 4.97 mmol) and ethyne (0.13 g, 5.0 mmol), heated at 140 °C (1 d), gave (i) nitrogen (0.13 g, 4.64 mmol, 94%), (ii) hexafluoroacetone (1.62 g, 9.7 mmol, 98%) (-196 °C fraction), (iii) a mixture of *N*,*N*-bis(trifluoromethylamine (1.48 g, 9.7 mmol, 98%) and hydrazine 2 (0.02 g, 0.07 mmol, 1.5%) as shown by its ¹⁹F NMR spectrum and which condensed at -120 °C, and (iv) a black solid (0.18 g) which remained in the tube.

(h) With benzene

A mixture of benzene (0.38 g, 4.90 mmol) and 1 (3.27 g, 4.90 mmol), heated at 140 °C (1 d), gave (i) nitrogen (0.13 g, 4.6 mmol, 95%), (ii) hexafluoroacetone (1.61 g, 9.7 mmol, 98% (-196 °C fraction), (iii) a mixture of the amine (CF₃)₂NH (1.30 g, 8.5 mmol, 87%) and hydrazine 2 (0.06 g,

0.20 mmol, 4%) as shown by its ¹⁹F NMR spectrum (-120 °C fraction), (iv) a mixture (0.16 g) which condensed at -45 °C and was shown by IR and ¹H and ¹⁹F NMR spectroscopy and GLC (OV 1 at 100 °C) to consist of unchanged benzene (*ca*. 0.04 g, 0.50 mmol, 10% recovered) and unidentified compounds (*ca*. 0.12 g) containing (CF₃)₂N groups ($\delta_{\rm F}$ +20 to +25 ppm) and (v) a colorless solid, which remained in the tube and was identified as biphenyl (0.29 g, 1.91 mmol, 78%), m.p. and mixed m.p., 70 °C; lit. [8] m.p., 70.5 °C.

(j) With bromine

A mixture of 1 (3.30 g, 4.94 mmol) and bromine (0.80 g, 5.0 mmol) placed in a stoppered flask (*ca.* 50 cm³) and kept at 30 °C in light (6 d) gave an orange ycllow liquid (2.09 g) and residual unchanged bromine (0.27 g, 1.69 mmol, 34% recovered). The liquid was shown by IR and ¹⁹F NMR spectroscopy to consist of *N*-bromobis(trifluoromethyl)amine (1.58 g, 6.81 mmol, 69%) ($\delta_{\rm F}$ + 16.5 ppm; lit. [9] + 16.2 ppm), hydrazine 2 (0.44 g, 1.45 mmol, 29.5%) and hexafluoroacetone (0.07 g).

(k) With nitroso compounds

A mixture of compound 1 (0.01 g), trifluoronitrosomethane or nitrosobenzene (0.01 g) and tetrachloromethane (0.5 g) was sealed *in vacuo* in a thick-walled Pyrex tube (3 mm i.d.) which was vigorously shaken at room temperature for 2 min. The tube was then placed in the cavity of an ESR spectrometer at -40 °C and on continuous UV irradiation the ESR spectrum was recorded.

The parameters obtained for the hydrazino-oxyls are as follows.

Results and discussion

Pyrolysis of compound 1 at 140 °C gave nitrogen, hexafluoroacetone and tetrakis(trifluoromethyl)hydrazine (2) in quantitative yields.

These products were formed via homolytic N-0 bond fission, *i.e.*

$$(CF_3)_2 N - O - C(CF_3)_2 - N = N - C(CF_3)_2 - O - N(CF_3)_2 \longrightarrow$$
(1)
$$\longrightarrow (2CF_3)_2 N \cdot + N_2 + 2(CF_3)_2 CO$$

$$\downarrow$$

$$(CF_3)_2 NN(CF_3)_2$$
(2)

as shown by the results obtained (Table 1) from the thermal decomposition (140 °C, 24 h) of compound 1 in the presence of fluoroalkenes.

The dimeric product $\mathbf{3}$, obtained from 1,1-dichlorodifluoroethylene, was identified by its ¹⁹F NMR spectrum { $\delta_{\rm F}$ + 24.15 [2 (CF₃)₂N] and + 2.5 (2 (CF_2) ppm} and mass spectrum $\{m/z 202 [41\%, (CF_3)_2 N C F_2^+]$ with an absence of peaks for $(CF_3)_2NCCl_2^+$ at m/z 238/236/234. The mass spectra of the chlorotrifluoroethylene dimer 5 and trimer 4, formed as diastereomeric mixtures, each contained a strong band at m/z 202 but no bands at m/z220/218 [(CF_3)₂NCFCl⁺]. In contrast, the mass spectrum of compound 6 showed bands at both m/z 202 (14%) and 220/218 (3.5%).

The tetramer 7, formed from trifluoroethylene, was a mixture of isomers and contained both (CF₃)₂NCHF and (CF₃)NCF₂ groupings {mass spectral bands at m/z 184 [63.6%, (CF₃)₂NCHF⁺] and 202 [13.9%, (CF₃)₂NCF₂⁺].

Exclusive $(CF_3)_2 N \cdot$ radical attack at the CF_2 groups of the alkenes $CF_2 = CCl_2$ [10] and $CF_2 = CFCl_1$ has been observed previously, and it is therefore considered that products 3-6 are formed as shown in Scheme 1.

 $(CF_3)_2NCF_2CCl_2CCl_2CF_2N(CF_3)_2$ $(CF_3)_2N(CF_2CFCl)_2CFClCF_2N(CF_3)_2$ (3) (4)

 $(CF_3)_2NCF_2CFClCFClCF_2N(CF_3)_2$ $(CF_3)_2NCF_2CFCIN(CF_3)_2$ (5)

 $(CF_{3})_{2}N(C_{2}HF_{3})_{n}N(CF_{3})_{2}$ (7) n=4(8) n>4

With trifluoroethylene, major $(CF_3)_2 N \cdot$ radical attack (ca. 80%) has been found to occur at the CHF group [1, 3, 11] similar to CF_3 attack [12], and

(6)

TABLE 1

Decomposition of compound 1 in the presence of fluoroalkenes

Alkene	Molar ratio 1:alkene	Recovered alkene (%)	N ₂	Products (%) ^a		
				2	(CF ₃) ₂ CO	Others
$CF_2 = CCl_2$	ca. 1:1	3	99.5	47	98	3 [47(90) ^b]
$CF_2 = CFCl$	ca. 1:1	4	97.5	65.5	98	4 [31(92) ^b]
CF ₂ =CFCl	ca. 2:1		97.5	75	99	4 [9(49) ^b] 5 [11(41) ^b] 6 [5(10) ^b]
CF ₂ =CHF	1:1		94.5	ca. 80	97	7 [13.5(54) ^b] 8 [°]

^aYields based on reactant 1.

^bYields based on alkene used, *i.e.* not recovered.

^cMixture of telomers of unknown molecular weight.

Scheme 1.

therefore the major intermediate radicals would be expected to be of the type $(CF_3)_2N(CHFCF_2)_n$ (n=1-3) leading to the tetramer $(CF_3)_2N(CHFCF_2)_m(CF_2CHF)_nN(CF_3)_2$ (m=n=2; m=3, n=1) by coupling.

The photochemical reaction of the dibromide CF₂BrCFClBr with chlorotrifluoroethylene has been reported recently [13] to give comparable products to those formed in the present work, *i.e.* Br(CF₂CFCl)_m(CFClCF₂)_nBr (m=n=1, 38%; m=2, n=1, 19%; m=n=2 mainly + higher telomers, 43%).

Using the same reactant ratio (1:1), the telomer chain length increases as the intermediate radical stability $(-\dot{C}Cl_2 > -\dot{C}FCl > -\dot{C}F_2 > -\dot{C}HF)$ decreases, *i.e.* dimer with $CF_2 = CCl_2$ (90%), trimer with $CF_2 = CFCl$ (92%) and tetramer with $CHF = CF_2$ (54%). However, what is remarkable is the observed selectivity in the coupling of the intermediate radicals formed in the $CF_2 = CFCl$ reaction, *i.e.* coupling between radicals 10 and 11 to give 4 is favoured, but dimerisation of radical 10 to give 5 and of radical 11 to give tetramer as well as coupling between intermediate radicals and $(CF_3)_2N \cdot$ radicals are not favoured. Even when a ratio of $1:CF_2 = CFCl$ of 2:1 was used, trimer 4 was formed in a yield comparable to that of dimer 5.

The azo compound 1 was also highly effective at polymerising chlorotrifluoroethylene, and the polymer formed in 72% yield from the reaction between the alkene and 1 [1500:1 molar ratio in the solvent $CF_2ClCFCl_2$ in vacuo in daylight (28 d)] had physical properties (glass transition temperature, melting point, etc.) almost identical to those reported for the polymer prepared using dicyclohexylperoxydicarbonate as initiator [14].

Surprisingly, reaction (1:1 molar) at 140 °C with ethyne and with benzene resulted in dehydrogenation. The former reaction gave nitrogen (94%), hexafluoroacetone (98%), hydrazine 2 (1.5%), the amine (CF₃)₂NH (98%) and carbon, while the latter reaction afforded nitrogen (95%), hexafluoroacetone (99%), hydrazine 2 (4%), (CF₃)₂NH (87%), unchanged benzene (10% recovered), a small amount of a liquid containing (CF₃)₂N-substituted compounds ($\delta_{\rm F}$ + 20 to + 25 ppm) and biphenyl (78%). The products are considered to arise as shown in Scheme 2.

Scheme 2.

These results contrast those obtained from the light-initiated reaction at room temperature of the *N*-bromoamine with ethyne to give the adduct $(CF_3)_2NCH=CHBr$ [15] and of the compound $(CF_3)_2NON(CF_3)_2$ with benzene to afford the substituted benzene $(CF_3)_2NC_6H_5$ [16]; both reactions were considered to involve initial $(CF_3)_2N \cdot$ radical attack on the substrates.

Compound 1 also undergoes slow reaction at 30 °C in light with bromine (1:1 molar ratio) over 6 d to give the N-bromoamine (CF₃)₂NBr (69%), hydrazine 2 (29.5%) and unchanged bromine (34% recovered).

Continuous UV irradiation at -40 °C of mixtures of the azo compound 1 and a nitroso compound RNO (R=CF₃ or Ph) in the solvent tetrachloromethane in the cavity of an ESR spectrometer gave spectra consistent with those expected for the hydrazino-oxyls (CF₃)₂NNRO· (R=CF₃ or Ph).

Acknowledgement

We thank Professor R. N. Haszeldine for his interest in this work and for laboratory facilities.

References

- 1 R. N. Haszeldine and A. E. Tipping, J. Chem. Soc., (1965) 6141.
- 2 R. N. Haszeldine and A. E. Tipping, J. Chem. Soc. C, (1966) 1236.
- 3 R. E. Banks, R. N. Haszeldine and T. Myerscough, J. Chem. Soc., Perkin Trans. 1, (1972) 1449.
- 4 R. N. Haszeldine and A. E. Tipping, J. Chem. Soc. C, (1967) 1241.
- 5 R. Fisher, R. N. Haszeldine and A. E. Tipping, J. Chem. Soc., Perkin Trans. 1, (1980) 406.
- 6 R. Fischer, Ph.D. Thesis, University of Manchester, 1981.
- 7 R. C. Dobie and H. J. Emeléus, J. Chem. Soc. A, (1966) 933.

- 8 W. H. Zartman and H. Adkins, J. Am. Chem. Soc., 54 (1932) 3398.
- 9 A. E. Tipping, Ph.D. Thesis, University of Manchester, 1963.
- 10 G. Newsholme, Ph.D. Thesis, University of Manchester, 1978.
- 11 G. L. Fleming, R. N. Haszeldine and A. E. Tipping, J. Chem. Soc. C, (1971) 3833.
- 12 R. N. Haszeldine and B. R. Steele, J. Chem. Soc., (1957) 2800.
- 13 V. Dědek and Z. Chvátal, J. Fluorine Chem., 31 (1986) 363.
- 14 R. Storey, Ph.D. Thesis, University of Manchester, 1980.
- H. J. Emeléus and B. W. Tattershall, Z. Anorg. Chem., 327 (1964) 147; J. Freear and A. E. Tipping, J. Chem. Soc. C, (1968) 1096.
- 16 G. D. Connelly, R. N. Haszeldine, A. Kenny, C. M. Irvin and A. E. Tipping, J. Fluorine Chem., 17 (1981) 191.